A newton-penalty method for a simplified liquid crystal model
نویسندگان
چکیده
In this paper we are concerned with the computation of a liquid crystal model defined by a simplified Oseen-Frank energy functional and a (sphere) nonlinear constraint. A particular case of this model defines the well known harmonic maps. We design an new iterative method for solving such a minimization problem with the nonlinear constraint. The main ideas are to linearize the nonlinear constraint by Newton’s method and to define a suitable penalty functional associated with the original minimization problem. It is shown that the solution sequence of the new minimization problems with the linear constraints converges to the desired solutions provided that the penalty parameters are chosen by a suitable rule. Numerical results confirm the efficiency of the new method.
منابع مشابه
Using an Efficient Penalty Method for Solving Linear Least Square Problem with Nonlinear Constraints
In this paper, we use a penalty method for solving the linear least squares problem with nonlinear constraints. In each iteration of penalty methods for solving the problem, the calculation of projected Hessian matrix is required. Given that the objective function is linear least squares, projected Hessian matrix of the penalty function consists of two parts that the exact amount of a part of i...
متن کاملLocal Stability and a Renormalized Newton Method for Equilibrium Liquid Crystal Director Modeling
We consider the nonlinear systems of equations that result from discretizations of a prototype variational model for the equilibrium director field characterizing the orientational properties of a liquid crystal material. In the presence of pointwise unit-vector constraints and coupled electric fields, the numerical solution of such equations by Lagrange-Newton methods leads to problems with a ...
متن کاملSuperlinearly convergent exact penalty projected structured Hessian updating schemes for constrained nonlinear least squares: asymptotic analysis
We present a structured algorithm for solving constrained nonlinear least squares problems, and establish its local two-step Q-superlinear convergence. The approach is based on an adaptive structured scheme due to Mahdavi-Amiri and Bartels of the exact penalty method of Coleman and Conn for nonlinearly constrained optimization problems. The structured adaptation also makes use of the ideas of N...
متن کاملParticle Swarm Optimization for Hydraulic Analysis of Water Distribution Systems
The analysis of flow in water-distribution networks with several pumps by the Content Model may be turned into a non-convex optimization uncertain problem with multiple solutions. Newton-based methods such as GGA are not able to capture a global optimum in these situations. On the other hand, evolutionary methods designed to use the population of individuals may find a global solution even for ...
متن کاملConstrained Optimization for Liquid Crystal Equilibria: Extended Results
This paper investigates energy-minimization finite-element approaches for the computation of nematic liquid crystal equilibrium configurations. We compare the performance of these methods when the necessary unit-length constraint is enforced by either continuous Lagrange multipliers or a penalty functional. Building on previous work in [1, 2], the penalty method is derived and the linearization...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Adv. Comput. Math.
دوره 40 شماره
صفحات -
تاریخ انتشار 2014